

Detector Support Group

We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-03-23

Summary

<u>Hall A – ECal</u>

George Jacobs, Mindy Leffel, and Marc McMullen

- Assembling supermodules 38 of 59 complete
- Measured and sorted 40 lead-glass assemblies

<u>Hall A – GEM</u>

Brian Eng, George Jacobs, and Marc McMullen

- Modified Python code for PID valve control added threading module
- Modified gas flow and pressure monitoring system added SBS mixing system Ar percent mix

	Hall A SBS GEM Flow Readout							
	Regulator Input Pressure 7.28 psi		Regulator Output Pressure		Argon % of mix			
			7.22 psi		77.69 %		Software Heartbeat 🛛 🔘	
	Hi Flow Ch09	Hi Flow Ch10	Std Flow Ch11	Std Flow Ch12	Std Flow Ch13	Std Flow Ch14	Std Flow Ch15	Std Flow Ch16
Hold EQ241 and A Latgravery lyse	0 sccm	1 sccm	139 sccm	140 sccm	143 sccm	138 sccm	155 sccm	166 sccm
	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good
		014 51 01-40						
	Std Flow Ch17	Sta Flow Ch18	Std Flow Ch19	Std Flow Ch20	Std Flow Ch21	Std Flow Ch22	Std Flow Ch23	Std Flow Ch24
	153 sccm	148 sccm	142 sccm	132 sccm	130 sccm	125 sccm	148 sccm	149 sccm
	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good
	Std Flow Ch25	Std Flow Ch26	Std Flow Ch27	Std Flow Ch28	Std Flow Ch29	Std Flow Ch30	Std Flow Ch31	Std Flow Ch32
	160 sccm	148 sccm	164 sccm	168 sccm	167 sccm	147 sccm	144 sccm	134 sccm
	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good
	Std Flow Ch33	Std Flow Ch34	Std Flow Ch35	Std Flow Ch36	Std Flow Ch37	Std Flow Ch38	Std Flow Ch39	Std Flow Ch40
	141 sccm	132 sccm	153 sccm	152 sccm	140 sccm	146 sccm	136 sccm	140 sccm
	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good	Status: good

ADC module has been installed and Ar supply percentage indicator has been added to the WEDM display for SBS

<u>Hall A – SoLID</u>

Pablo Campero, Mindy Leffel, and Marc McMullen

- Developing Solenoid Voltage Tap HMI screen
- Generated solenoid voltage tap locations Visio drawing

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-03-23

SoLID Solenoid Voltage Tap Locations Visio drawing

- Fabricating 100' long cables 56 of 64 complete
- Fabricated 16 load sensor cables, crimped male pins and inserted into CPC connectors
- Developing NX12 model of SoLID magnet

<u>Hall B – RICH-II</u>

Mary Ann Antonioli, Peter Bonneau, Pablo Campero, Brian Eng, George Jacobs, Tyler Lemon, and Marc McMullen

- Designed acrylic panels with cutouts for disconnect for the hardware interlock system's electronic panel sensor patch panel
- Further investigated override switch monitoring and indication on hardware interlock chassis
 - ★ Tested original circuit for override switch monitoring analog input and LED indicator in series
 - * Found that high impedance in LED indicator package (~1.5 M Ω) was preventing analog input channel from being pulled to ground when override switch is enabled
 - Moving analog input channel to be in parallel with LED resolved problem; override monitoring and indication now works as intended with RMC analog input monitoring

Original override switch monitoring and indication circuit that did not work as expected. In diagram, override is disabled and ADC channel floats to ~2 V.

Detector Support Group We choose to do these things "not because they are easy, but because they are hard". Weekly Report, 2022-03-23

New override switch monitoring and indication circuit that works as expected. In diagram, override is disabled and ADC is pulled to ground.

• Assisted with removal of exit window from RICH-II detector shell

<u>Hall C – NPS</u>

Mary Ann Antonioli, Peter Bonneau, Aaron Brown, Pablo Campero, Brian Eng, George Jacobs, Mindy Leffel, Tyler Lemon, and Marc McMullen

- Developing LabVIEW hardware interlock user interface; completed *Interlock Status and Signal Monitoring* tab, started *Threshold and Enable Controls* tab
- Generated lego plot of front crystal face temperatures using temperature probe data exported from Ansys steady-state thermal analysis

Crystal Temperatures - Front (0 W, 10 °C Cu Shell)

Plot of front crystal face temperatures generated using Ansys temperature probe data

3 DSG Weekly Report, 2022-03-23

- Modified simplified model of electronics zone for Ansys thermal analysis
 - ★ Added air volumes to surround electronics zone and set them as fluids using Ansys Design Modeler
- Performed steady state thermal analysis using simplified model
 - * Calculated the internal heat generation in the electronic volume 982.17 W/m^3
 - * Noted higher than expected values for max. temperature; results under evaluation

<u>Hall D – JEF</u>

Mary Ann Antonioli, Aaron Brown, George Jacobs, and Mindy Leffel

- Foil pre-shaping 464 of 1600 complete
- Wrapped 26 crystals with ESR foil and Tedlar

EIC

Pablo Campero, Brian Eng

- Conducting, using Ansys Fluid Flow Fluent, thermal analysis of Be beam pipe with an air velocity of 10 m/s for the ambient and annulus space
 - ★ Did not get expected results; investigation in progress
- Switched to implementing MPGD disc support concept first, providing information to designers
 - Initial concept started; need to revise dimensions on outer diameter trapezoids and to add readout electronics and inner discs

DSG R&D – CS-Studio Phoebus

<u>Peter Bonneau</u>

- Developing a site-specific Phoebus product
 - Bundles together the configuration files and application preference settings into a package for distribution on multiple computers
 - * Bundles custom menu labels and user interface settings for the applications
 - * Reduces complexity; much easier than compiling the entire Phoebus product from source code on every distribution computer

DSG R&D – LabVIEW/EPICS

<u>Tyler Lemon</u>

- Developed, and refined documentation for, Python program to generate LabVIEW shared variable library CSV file and EPICS client database file from an Excel file
 - Created example subVI for code to add to LabVIEW real-time device if EPICS server is used
 - Modified Python program to allow user to more easily specify whether an EPICS client or server will be used and the details for the device that will run the server/client